Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Correlation among multiple phenotypes across related individuals may reflect some pattern of shared genetic architecture: individual genetic loci affect multiple phenotypes (an effect known as pleiotropy), creating observable relationships between phenotypes. A natural hypothesis is that pleiotropic effects reflect a relatively small set of common “core” cellular processes: each genetic locus affects one or a few core processes, and these core processes in turn determine the observed phenotypes. Here, we propose a method to infer such structure in genotype–phenotype data. Our approach, sparse structure discovery (SSD) is based on a penalized matrix decomposition designed to identify latent structure that is low-dimensional (many fewer core processes than phenotypes and genetic loci), locus-sparse (each locus affects few core processes), and/or phenotype-sparse (each phenotype is influenced by few core processes). Our use of sparsity as a guide in the matrix decomposition is motivated by the results of a novel empirical test indicating evidence of sparse structure in several recent genotype–phenotype datasets. First, we use synthetic data to show that our SSD approach can accurately recover core processes if each genetic locus affects few core processes or if each phenotype is affected by few core processes. Next, we apply the method to three datasets spanning adaptive mutations in yeast, genotoxin robustness assay in human cell lines, and genetic loci identified from a yeast cross, and evaluate the biological plausibility of the core process identified. More generally, we propose sparsity as a guiding prior for resolving latent structure in empirical genotype–phenotype maps.more » « less
-
Abstract As organisms evolve, the effects of mutations change as a result of epistatic interactions with other mutations accumulated along the line of descent. This can lead to shifts in adaptability or robustness that ultimately shape subsequent evolution. Here, we review recent advances in measuring, modeling, and predicting epistasis along evolutionary trajectories, both in microbial cells and single proteins. We focus on simple patterns of global epistasis that emerge in this data, in which the effects of mutations can be predicted by a small number of variables. The emergence of these patterns offers promise for efforts to model epistasis and predict evolution.more » « less
-
Abstract The large-scale and nonaseptic fermentation of sugarcane feedstocks into fuel ethanol in biorefineries represents a unique ecological niche, in which the yeast Saccharomyces cerevisiae is the predominant organism. Several factors, such as sugarcane variety, process design, and operating and weather conditions, make each of the ∼400 industrial units currently operating in Brazil a unique ecosystem. Here, we track yeast population dynamics in 2 different biorefineries through 2 production seasons (April to November of 2018 and 2019), using a novel statistical framework on a combination of metagenomic and clonal sequencing data. We find that variation from season to season in 1 biorefinery is small compared to the differences between the 2 units. In 1 biorefinery, all lineages present during the entire production period derive from 1 of the starter strains, while in the other, invading lineages took over the population and displaced the starter strain. However, despite the presence of invading lineages and the nonaseptic nature of the process, all yeast clones we isolated are phylogenetically related to other previously sequenced bioethanol yeast strains, indicating a common origin from this industrial niche. Despite the substantial changes observed in yeast populations through time in each biorefinery, key process indicators remained quite stable through both production seasons, suggesting that the process is robust to the details of these population dynamics.more » « less
-
As an adapting population traverses the fitness landscape, its local neighborhood (i.e., the collection of fitness effects of single-step mutations) can change shape because of interactions with mutations acquired during evolution. These changes to the distribution of fitness effects can affect both the rate of adaptation and the accumulation of deleterious mutations. However, while numerous models of fitness landscapes have been proposed in the literature, empirical data on how this distribution changes during evolution remains limited. In this study, we directly measure how the fitness landscape neighborhood changes during laboratory adaptation. Using a barcode-based mutagenesis system, we measure the fitness effects of 91 specific gene disruption mutations in genetic backgrounds spanning 8000–10,000 generations of evolution in two constant environments. We find that the mean of the distribution of fitness effects decreases in one environment, indicating a reduction in mutational robustness, but does not change in the other. We show that these distribution-level patterns result from differences in the relative frequency of certain patterns of epistasis at the level of individual mutations, including fitness-correlated and idiosyncratic epistasis.more » « less
An official website of the United States government
